

OMEMO - A Python implementation of the OMEMO Multi-End Message and Object Encryption protocol.

A Python implementation of the OMEMO Multi-End Message and Object Encryption protocol [https://xmpp.org/extensions/xep-0384.html].

A complete implementation of XEP-0384 [https://xmpp.org/extensions/xep-0384.html] on protocol-level, i.e. more than just the cryptography. python-omemo supports different versions of the specification through so-called backends. A backend for OMEMO in the urn:xmpp:omemo:2 namespace (the most recent version of the specification) is available in the python-twomemo [https://github.com/Syndace/python-twomemo] Python package. A backend for (legacy) OMEMO in the eu.siacs.conversations.axolotl namespace is available in the python-oldmemo [https://github.com/Syndace/python-oldmemo] package. Multiple backends can be loaded and used at the same time, the library manages their coexistence transparently.

	Installation

	Getting Started
	Backend Selection

	Public API and Backends

	Trust

	Setting it Up
	Storage Implementation

	SessionManager Implementation

	Instantiate the Library

	Migration

	Migration from Legacy

	API Documentation
	Module: backend
	Backend
	Backend.__init__()

	Backend.max_num_per_session_skipped_keys

	Backend.max_num_per_message_skipped_keys

	Backend.namespace

	Backend.load_session()

	Backend.store_session()

	Backend.build_session_active()

	Backend.build_session_passive()

	Backend.encrypt_plaintext()

	Backend.encrypt_empty()

	Backend.encrypt_key_material()

	Backend.decrypt_plaintext()

	Backend.decrypt_key_material()

	Backend.signed_pre_key_age()

	Backend.rotate_signed_pre_key()

	Backend.hide_pre_key()

	Backend.delete_pre_key()

	Backend.delete_hidden_pre_keys()

	Backend.get_num_visible_pre_keys()

	Backend.generate_pre_keys()

	Backend.get_bundle()

	Backend.purge()

	Backend.purge_bare_jid()

	BackendException

	DecryptionFailed

	KeyExchangeFailed

	TooManySkippedMessageKeys

	Module: bundle
	Bundle
	Bundle.namespace

	Bundle.bare_jid

	Bundle.device_id

	Bundle.identity_key

	Bundle.__eq__()

	Bundle.__hash__()

	Module: identity_key_pair
	IdentityKeyPair
	IdentityKeyPair.LOG_TAG

	IdentityKeyPair.get()

	IdentityKeyPair.is_seed

	IdentityKeyPair.is_priv

	IdentityKeyPair.as_priv()

	IdentityKeyPair.identity_key

	IdentityKeyPairPriv
	IdentityKeyPairPriv.__init__()

	IdentityKeyPairPriv.is_seed

	IdentityKeyPairPriv.is_priv

	IdentityKeyPairPriv.as_priv()

	IdentityKeyPairPriv.identity_key

	IdentityKeyPairPriv.priv

	IdentityKeyPairSeed
	IdentityKeyPairSeed.__init__()

	IdentityKeyPairSeed.is_seed

	IdentityKeyPairSeed.is_priv

	IdentityKeyPairSeed.as_priv()

	IdentityKeyPairSeed.identity_key

	IdentityKeyPairSeed.seed

	Module: message
	Content
	Content.empty

	EncryptedKeyMaterial
	EncryptedKeyMaterial.bare_jid

	EncryptedKeyMaterial.device_id

	KeyExchange
	KeyExchange.identity_key

	KeyExchange.builds_same_session()

	Message
	Message.namespace

	Message.bare_jid

	Message.device_id

	Message.content

	Message.keys

	PlainKeyMaterial

	Module: session
	Initiation
	Initiation.ACTIVE

	Initiation.PASSIVE

	Session
	Session.namespace

	Session.bare_jid

	Session.device_id

	Session.initiation

	Session.confirmed

	Session.key_exchange

	Session.receiving_chain_length

	Session.sending_chain_length

	Module: session_manager
	SessionManagerException

	TrustDecisionFailed

	StillUndecided

	NoEligibleDevices
	NoEligibleDevices.__init__()

	MessageNotForUs

	SenderNotFound

	SenderDistrusted

	NoSession

	PublicDataInconsistency

	UnknownTrustLevel

	UnknownNamespace

	XMPPInteractionFailed

	BundleUploadFailed

	BundleDownloadFailed

	BundleNotFound

	BundleDeletionFailed

	DeviceListUploadFailed

	DeviceListDownloadFailed

	MessageSendingFailed

	SessionManager
	SessionManager.DEVICE_ID_MIN

	SessionManager.DEVICE_ID_MAX

	SessionManager.STALENESS_MAGIC_NUMBER

	SessionManager.LOG_TAG

	SessionManager.create()

	SessionManager.purge_backend()

	SessionManager.purge_bare_jid()

	SessionManager.ensure_data_consistency()

	SessionManager._upload_bundle()

	SessionManager._download_bundle()

	SessionManager._delete_bundle()

	SessionManager._upload_device_list()

	SessionManager._download_device_list()

	SessionManager._evaluate_custom_trust_level()

	SessionManager._make_trust_decision()

	SessionManager._send_message()

	SessionManager.update_device_list()

	SessionManager.refresh_device_list()

	SessionManager.set_trust()

	SessionManager.replace_sessions()

	SessionManager.get_sending_chain_length()

	SessionManager.set_own_label()

	SessionManager.get_device_information()

	SessionManager.get_own_device_information()

	SessionManager.format_identity_key()

	SessionManager.before_history_sync()

	SessionManager.after_history_sync()

	SessionManager.encrypt()

	SessionManager.decrypt()

	Module: storage
	Just
	Just.__init__()

	Just.is_just

	Just.is_nothing

	Just.from_just()

	Just.maybe()

	Just.fmap()

	Maybe
	Maybe.is_just

	Maybe.is_nothing

	Maybe.from_just()

	Maybe.maybe()

	Maybe.fmap()

	Nothing
	Nothing.__init__()

	Nothing.is_just

	Nothing.is_nothing

	Nothing.from_just()

	Nothing.maybe()

	Nothing.fmap()

	NothingException

	Storage
	Storage.__init__()

	Storage._load()

	Storage._store()

	Storage._delete()

	Storage.load()

	Storage.store()

	Storage.delete()

	Storage.store_bytes()

	Storage.load_primitive()

	Storage.load_bytes()

	Storage.load_optional()

	Storage.load_list()

	Storage.load_dict()

	StorageException

	Module: types
	AsyncFramework
	AsyncFramework.ASYNCIO

	AsyncFramework.TWISTED

	DeviceInformation
	DeviceInformation.namespaces

	DeviceInformation.active

	DeviceInformation.bare_jid

	DeviceInformation.device_id

	DeviceInformation.identity_key

	DeviceInformation.trust_level_name

	DeviceInformation.label

	OMEMOException

	TrustLevel
	TrustLevel.TRUSTED

	TrustLevel.DISTRUSTED

	TrustLevel.UNDECIDED

Installation

Install the latest release using pip (pip install OMEMO) or manually from source by running pip install . in the cloned repository.

Getting Started

python-omemo only ships the core functionality common to all versions of XEP-0384 [https://xmpp.org/extensions/xep-0384.html] and relies on backends to implement the details of each version. Each backend is uniquely identified by the namespace it implements.

Backend Selection

There are two official backends:

	Namespace

	Link

	urn:xmpp:omemo:2

	python-twomemo [https://github.com/Syndace/python-twomemo]

	eu.siacs.conversations.axolotl

	python-oldmemo [https://github.com/Syndace/python-oldmemo]

Both backends (and more) can be loaded at the same time and the library will handle compatibility. You can specify backend priority, which will be used to decide which backend to use for encryption in case a recipient device supports multiple loaded backends.

Public API and Backends

Backends differ in many aspects, from the wire format of the transferred data to the internal cryptographic primitves used. Thus, most parts of the public API take a parameter that specifies the backend to use for the given operation. The core transparently handles all things common to backends and forwards the backend-specific parts to the corresponding backend.

Trust

python-omemo offers trust management. Since it is not always obvious how trust and JID/device id/identity key belong together, this section gives an overview of the trust concept followed by python-omemo.

Each XMPP account has a pool of identity keys. Each device is assigned one identity key from the pool. Theoretically, this concept allows for one identity key to be assigned to multiple devices, however, the security implications of doing so have not been addressed in the XEP, thus it is not recommended and not supported by this library.

Trust levels are assigned to identity keys, not devices. I.e. devices are not directly trusted, only implicitly by trusting the identity key assigned to them.

The library works with two types of trust levels: custom trust levels and core trust levels. Custom trust levels are assigned to identity keys and can be any Python string. There is no limitation on the number of custom trust levels. Custom trust levels are not used directly by the library for decisions requiring trust (e.g. during message encryption), instead they are translated to one of the three core trust levels first: Trusted, Distrusted, Undecided. The translation from custom trust levels to core trust levels has to be supplied by implementing the _evaluate_custom_trust_level() method.

This trust concept allows for the implementation of trust systems like BTBV [https://gultsch.de/trust.html], TOFU [https://en.wikipedia.org/wiki/Trust_on_first_use], simple manual trust or more complex systems.

An example of a BTBV trust system implementation can be found in examples/btbv_session_manager.py. If you happen to aim for BTBV support in your client, feel free to use that code as a starting point.

Setting it Up

With the backends selected and the trust system chosen, the library can be set up.

This is done in three steps:

	Create a Storage implementation

	Create a SessionManager implementation

	Instantiate your SessionManager implementation

Storage Implementation

python-omemo uses a simple key-value storage to persist its state. This storage has to be provided to the library by implementing the Storage interface. Refer to the API documentation of the Storage interface for details.

Warning

It might be tempting to offer a backup/restore flow for the OMEMO data. However, due to the forward secrecy of OMEMO, restoring old data results in broken sessions. It is strongly recommended to not include OMEMO data in backups, and to at most include it in migration flows that make sure that old data can’t be restored over newer data.

SessionManager Implementation

Create a subclass of SessionManager. There are various abstract methods for interaction with XMPP (device lists, bundles etc.) and trust management that you have to fill out to integrate the library with your client/framework. The API documentation of the SessionManager class should contain the necessary information.

Instantiate the Library

Finally, instantiate the storage, backends and then the SessionManager, which is the class that offers all of the public API for message encryption, decryption, trust and device management etc. To do so, simply call the create() method, passing the backend and storage implementations you’ve prepared. Refer to the API documentation for details on the configuration options accepted by create().

Migration

Refer to Migration from Legacy for information about migrating from pre-stable python-omemo to python-omemo 1.0+. Migrations within stable (1.0+) versions are handled automatically.

Migration from Legacy

Due to the multi-backend approach and storage structure of python-omemo, migrations are provided by backends rather than the core library. For users of legacy python-omemo (i.e. versions before 1.0.0) with python-omemo-backend-signal, the python-oldmemo [https://github.com/Syndace/python-oldmemo] package provides migrations. Please refer to the backend documentation for details.

Package: omemo

	Module: backend
	Backend
	Backend.__init__()

	Backend.max_num_per_session_skipped_keys

	Backend.max_num_per_message_skipped_keys

	Backend.namespace

	Backend.load_session()

	Backend.store_session()

	Backend.build_session_active()

	Backend.build_session_passive()

	Backend.encrypt_plaintext()

	Backend.encrypt_empty()

	Backend.encrypt_key_material()

	Backend.decrypt_plaintext()

	Backend.decrypt_key_material()

	Backend.signed_pre_key_age()

	Backend.rotate_signed_pre_key()

	Backend.hide_pre_key()

	Backend.delete_pre_key()

	Backend.delete_hidden_pre_keys()

	Backend.get_num_visible_pre_keys()

	Backend.generate_pre_keys()

	Backend.get_bundle()

	Backend.purge()

	Backend.purge_bare_jid()

	BackendException

	DecryptionFailed

	KeyExchangeFailed

	TooManySkippedMessageKeys

	Module: bundle
	Bundle
	Bundle.namespace

	Bundle.bare_jid

	Bundle.device_id

	Bundle.identity_key

	Bundle.__eq__()

	Bundle.__hash__()

	Module: identity_key_pair
	IdentityKeyPair
	IdentityKeyPair.LOG_TAG

	IdentityKeyPair.get()

	IdentityKeyPair.is_seed

	IdentityKeyPair.is_priv

	IdentityKeyPair.as_priv()

	IdentityKeyPair.identity_key

	IdentityKeyPairPriv
	IdentityKeyPairPriv.__init__()

	IdentityKeyPairPriv.is_seed

	IdentityKeyPairPriv.is_priv

	IdentityKeyPairPriv.as_priv()

	IdentityKeyPairPriv.identity_key

	IdentityKeyPairPriv.priv

	IdentityKeyPairSeed
	IdentityKeyPairSeed.__init__()

	IdentityKeyPairSeed.is_seed

	IdentityKeyPairSeed.is_priv

	IdentityKeyPairSeed.as_priv()

	IdentityKeyPairSeed.identity_key

	IdentityKeyPairSeed.seed

	Module: message
	Content
	Content.empty

	EncryptedKeyMaterial
	EncryptedKeyMaterial.bare_jid

	EncryptedKeyMaterial.device_id

	KeyExchange
	KeyExchange.identity_key

	KeyExchange.builds_same_session()

	Message
	Message.namespace

	Message.bare_jid

	Message.device_id

	Message.content

	Message.keys

	PlainKeyMaterial

	Module: session
	Initiation
	Initiation.ACTIVE

	Initiation.PASSIVE

	Session
	Session.namespace

	Session.bare_jid

	Session.device_id

	Session.initiation

	Session.confirmed

	Session.key_exchange

	Session.receiving_chain_length

	Session.sending_chain_length

	Module: session_manager
	SessionManagerException

	TrustDecisionFailed

	StillUndecided

	NoEligibleDevices
	NoEligibleDevices.__init__()

	MessageNotForUs

	SenderNotFound

	SenderDistrusted

	NoSession

	PublicDataInconsistency

	UnknownTrustLevel

	UnknownNamespace

	XMPPInteractionFailed

	BundleUploadFailed

	BundleDownloadFailed

	BundleNotFound

	BundleDeletionFailed

	DeviceListUploadFailed

	DeviceListDownloadFailed

	MessageSendingFailed

	SessionManager
	SessionManager.DEVICE_ID_MIN

	SessionManager.DEVICE_ID_MAX

	SessionManager.STALENESS_MAGIC_NUMBER

	SessionManager.LOG_TAG

	SessionManager.create()

	SessionManager.purge_backend()

	SessionManager.purge_bare_jid()

	SessionManager.ensure_data_consistency()

	SessionManager._upload_bundle()

	SessionManager._download_bundle()

	SessionManager._delete_bundle()

	SessionManager._upload_device_list()

	SessionManager._download_device_list()

	SessionManager._evaluate_custom_trust_level()

	SessionManager._make_trust_decision()

	SessionManager._send_message()

	SessionManager.update_device_list()

	SessionManager.refresh_device_list()

	SessionManager.set_trust()

	SessionManager.replace_sessions()

	SessionManager.get_sending_chain_length()

	SessionManager.set_own_label()

	SessionManager.get_device_information()

	SessionManager.get_own_device_information()

	SessionManager.format_identity_key()

	SessionManager.before_history_sync()

	SessionManager.after_history_sync()

	SessionManager.encrypt()

	SessionManager.decrypt()

	Module: storage
	Just
	Just.__init__()

	Just.is_just

	Just.is_nothing

	Just.from_just()

	Just.maybe()

	Just.fmap()

	Maybe
	Maybe.is_just

	Maybe.is_nothing

	Maybe.from_just()

	Maybe.maybe()

	Maybe.fmap()

	Nothing
	Nothing.__init__()

	Nothing.is_just

	Nothing.is_nothing

	Nothing.from_just()

	Nothing.maybe()

	Nothing.fmap()

	NothingException

	Storage
	Storage.__init__()

	Storage._load()

	Storage._store()

	Storage._delete()

	Storage.load()

	Storage.store()

	Storage.delete()

	Storage.store_bytes()

	Storage.load_primitive()

	Storage.load_bytes()

	Storage.load_optional()

	Storage.load_list()

	Storage.load_dict()

	StorageException

	Module: types
	AsyncFramework
	AsyncFramework.ASYNCIO

	AsyncFramework.TWISTED

	DeviceInformation
	DeviceInformation.namespaces

	DeviceInformation.active

	DeviceInformation.bare_jid

	DeviceInformation.device_id

	DeviceInformation.identity_key

	DeviceInformation.trust_level_name

	DeviceInformation.label

	OMEMOException

	TrustLevel
	TrustLevel.TRUSTED

	TrustLevel.DISTRUSTED

	TrustLevel.UNDECIDED

Module: backend

	
class omemo.backend.Backend(max_num_per_session_skipped_keys=1000, max_num_per_message_skipped_keys=None)

	Bases: ABC

The base class for all backends. A backend is a unit providing the functionality of a certain OMEMO
version to the core library.

Warning

Make sure to call __init__() from your subclass to configure per-message and per-session skipped
message key DoS protection thresholds, and respect those thresholds when decrypting key material using
decrypt_key_material().

Note

Most methods can raise StorageException in addition to those exceptions
listed explicitly.

Note

All usages of “identity key” in the public API refer to the public part of the identity key pair in
Ed25519 format. Otherwise, “identity key pair” is explicitly used to refer to the full key pair.

Note

For backend implementors: as part of your backend implementation, you are expected to subclass various
abstract base classes like Session, Content,
PlainKeyMaterial, EncryptedKeyMaterial and
KeyExchange. Whenever any of these abstract base types appears in a method
signature of the Backend class, what’s actually meant is an instance of your respective
subclass. This is not correctly expressed through the type system, since I couldn’t think of a clean
way to do so. Adding generics for every single of these types seemed not worth the effort. For now,
the recommended way to deal with this type inaccuray is to assert the types of the affected method
parameters, for example:

async def store_session(self, session: Session) -> Any:
 assert isinstance(session, MySessionImpl)

 ...

Doing so tells mypy how to deal with the situation. These assertions should never fail.

Note

For backend implementors: you can access the identity key pair at any time via
omemo.identity_key_pair.IdentityKeyPair.get().

	Parameters

	
	max_num_per_session_skipped_keys (int) –

	max_num_per_message_skipped_keys (Optional[int]) –

	
__init__(max_num_per_session_skipped_keys=1000, max_num_per_message_skipped_keys=None)

	
	Parameters

	
	max_num_per_session_skipped_keys (int) – The maximum number of skipped message keys to keep around per
session. Once the maximum is reached, old message keys are deleted to make space for newer
ones. Accessible via max_num_per_session_skipped_keys.

	max_num_per_message_skipped_keys (Optional[int]) – The maximum number of skipped message keys to accept in a single
message. When set to None (the default), this parameter defaults to the per-session
maximum (i.e. the value of the max_num_per_session_skipped_keys parameter). This parameter
may only be 0 if the per-session maximum is 0, otherwise it must be a number between 1 and the
per-session maximum. Accessible via max_num_per_message_skipped_keys.

	Return type

	None

	
property max_num_per_session_skipped_keys: int

	Returns:
The maximum number of skipped message keys to keep around per session.

	Return type

	int

	
property max_num_per_message_skipped_keys: int

	Returns:
The maximum number of skipped message keys to accept in a single message.

	Return type

	int

	
abstract property namespace: str

	Returns:
The namespace provided/handled by this backend implementation.

	Return type

	str

	
abstract async load_session(bare_jid, device_id)

	
	Parameters

	
	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	Return type

	Optional[Session]

	Returns

	The session associated with the device, or None if such a session does not exist.

Warning

Multiple sessions for the same device can exist in memory, however only one session per device can
exist in storage. Which one of the in-memory sessions is persisted in storage is controlled by
calling the store_session() method.

	
abstract async store_session(session)

	Store a session, overwriting any previously stored session for the bare JID and device id this session
belongs to.

	Parameters

	session (Session) – The session to store.

	Return type

	None

Warning

Multiple sessions for the same device can exist in memory, however only one session per device can
exist in storage. Which one of the in-memory sessions is persisted in storage is controlled by
calling this method.

	Return type

	None

	Parameters

	session (Session) –

	
abstract async build_session_active(bare_jid, device_id, bundle, plain_key_material)

	Actively build a session.

	Parameters

	
	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	bundle (Bundle) – The bundle containing the public key material of the other device required for active
session building.

	plain_key_material (PlainKeyMaterial) – The key material to encrypt for the recipient as part of the initial key
exchange/session initiation.

	Return type

	Tuple[Session, EncryptedKeyMaterial]

	Returns

	The newly built session, the encrypted key material and the key exchange information required by
the other device to complete the passive part of session building. The
initiation property of the returned session must return
ACTIVE. The key_exchange property
of the returned session must return the information required by the other party to complete its
part of the key exchange.

	Raises

	KeyExchangeFailed – in case of failure related to the key exchange required for session building.

Warning

This method may be called for a device which already has a session. In that case, the original
session must remain in storage and must remain loadable via load_session(). Only upon
calling store_session(), the old session must be overwritten with the new one. In summary,
multiple sessions for the same device can exist in memory, while only one session per device can
exist in storage, which can be controlled using the store_session() method.

	
abstract async build_session_passive(bare_jid, device_id, key_exchange, encrypted_key_material)

	Passively build a session.

	Parameters

	
	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	key_exchange (KeyExchange) – Key exchange information for the passive session building.

	encrypted_key_material (EncryptedKeyMaterial) – The key material to decrypt as part of the initial key exchange/session
initiation.

	Return type

	Tuple[Session, PlainKeyMaterial]

	Returns

	The newly built session and the decrypted key material. Note that the pre key used to initiate
this session must somehow be associated with the session, such that hide_pre_key() and
delete_pre_key() can work.

	Raises

	
	KeyExchangeFailed – in case of failure related to the key exchange required for session building.

	DecryptionFailed – in case of backend-specific failures during decryption of the initial message.

Warning

This method may be called for a device which already has a session. In that case, the original
session must remain in storage and must remain loadable via load_session(). Only upon
calling store_session(), the old session must be overwritten with the new one. In summary,
multiple sessions for the same device can exist in memory, while only one session per device can
exist in storage, which can be controlled using the store_session() method.

	
abstract async encrypt_plaintext(plaintext)

	Encrypt some plaintext symmetrically.

	Parameters

	plaintext (bytes) – The plaintext to encrypt symmetrically.

	Return type

	Tuple[Content, PlainKeyMaterial]

	Returns

	The encrypted plaintext aka content, as well as the key material needed to decrypt it.

	
abstract async encrypt_empty()

	Encrypt an empty message for the sole purpose of session manangement/ratchet forwarding/key material
transportation.

	Return type

	Tuple[Content, PlainKeyMaterial]

	Returns

	The symmetrically encrypted empty content, and the key material needed to decrypt it.

	
abstract async encrypt_key_material(session, plain_key_material)

	Encrypt some key material asymmetrically using the session.

	Parameters

	
	session (Session) – The session to encrypt the key material with.

	plain_key_material (PlainKeyMaterial) – The key material to encrypt asymmetrically for each recipient.

	Return type

	EncryptedKeyMaterial

	Returns

	The encrypted key material.

	
abstract async decrypt_plaintext(content, plain_key_material)

	Decrypt some symmetrically encrypted plaintext.

	Parameters

	
	content (Content) – The content to decrypt. Not empty, i.e. Content.empty will return False.

	plain_key_material (PlainKeyMaterial) – The key material to decrypt with.

	Return type

	bytes

	Returns

	The decrypted plaintext.

	Raises

	DecryptionFailed – in case of backend-specific failures during decryption.

	
abstract async decrypt_key_material(session, encrypted_key_material)

	Decrypt some key material asymmetrically using the session.

	Parameters

	
	session (Session) – The session to decrypt the key material with.

	encrypted_key_material (EncryptedKeyMaterial) – The encrypted key material.

	Return type

	PlainKeyMaterial

	Returns

	The decrypted key material

	Raises

	
	TooManySkippedMessageKeys – if the number of message keys skipped by this message exceeds the upper
 limit enforced by max_num_per_message_skipped_keys.

	DecryptionFailed – in case of backend-specific failures during decryption.

Warning

Make sure to respect the values of max_num_per_session_skipped_keys and
max_num_per_message_skipped_keys.

Note

When the maximum number of skipped message keys for this session, given by
max_num_per_session_skipped_keys, is exceeded, old skipped message keys are deleted to
make space for new ones.

	
abstract async signed_pre_key_age()

	
	Return type

	int

	Returns

	The age of the signed pre key, i.e. the time elapsed since it was last rotated, in seconds.

	
abstract async rotate_signed_pre_key()

	Rotate the signed pre key. Keep the old signed pre key around for one additional rotation period, i.e.
until this method is called again.

	Return type

	None

	
abstract async hide_pre_key(session)

	Hide a pre key from the bundle returned by get_bundle() and pre key count returned by
get_num_visible_pre_keys(), but keep the pre key for cryptographic operations.

	Parameters

	session (Session) – A session that was passively built using build_session_passive(). Use this session
to identity the pre key to hide.

	Return type

	bool

	Returns

	Whether the pre key was hidden. If the pre key doesn’t exist (e.g. because it has already been
deleted), or was already hidden, do not throw an exception, but return False instead.

	
abstract async delete_pre_key(session)

	Delete a pre key.

	Parameters

	session (Session) – A session that was passively built using build_session_passive(). Use this session
to identity the pre key to delete.

	Return type

	bool

	Returns

	Whether the pre key was deleted. If the pre key doesn’t exist (e.g. because it has already been
deleted), do not throw an exception, but return False instead.

	
abstract async delete_hidden_pre_keys()

	Delete all pre keys that were previously hidden using hide_pre_key().

	Return type

	None

	
abstract async get_num_visible_pre_keys()

	
	Return type

	int

	Returns

	The number of visible pre keys available. The number returned here should match the number of pre
keys included in the bundle returned by get_bundle().

	
abstract async generate_pre_keys(num_pre_keys)

	Generate and store pre keys.

	Parameters

	num_pre_keys (int) – The number of pre keys to generate.

	Return type

	None

	
abstract async get_bundle(bare_jid, device_id)

	
	Parameters

	
	bare_jid (str) – The bare JID of this XMPP account, to be included in the bundle.

	device_id (int) – The id of this device, to be included in the bundle.

	Return type

	Bundle

	Returns

	The bundle containing public information about the cryptographic state of this backend.

Warning

Do not include pre keys hidden by hide_pre_key() in the bundle!

	
abstract async purge()

	Remove all data related to this backend from the storage.

	Return type

	None

	
abstract async purge_bare_jid(bare_jid)

	Delete all data corresponding to an XMPP account.

	Parameters

	bare_jid (str) – Delete all data corresponding to this bare JID.

	Return type

	None

	
exception omemo.backend.BackendException

	Bases: OMEMOException

Parent type for all exceptions specific to Backend.

	
exception omemo.backend.DecryptionFailed

	Bases: BackendException

Raised by various methods of Backend in case of backend-specific failures during decryption.

	
exception omemo.backend.KeyExchangeFailed

	Bases: BackendException

Raised by Backend.build_session_active() and Backend.build_session_passive() in case of an
error during the processing of a key exchange for session building. Known error conditions are:

	The bundle does not contain and pre keys (active session building)

	The signature of the signed pre key could not be verified (active session building)

	An unkown (signed) pre key was referred to (passive session building)

Additional backend-specific error conditions might exist.

	
exception omemo.backend.TooManySkippedMessageKeys

	Bases: BackendException

Raised by Backend.decrypt_key_material() if a message skips more message keys than allowed.

Module: bundle

	
class omemo.bundle.Bundle

	Bases: ABC

The bundle of a device, containing the cryptographic information required for active session building.

Note

All usages of “identity key” in the public API refer to the public part of the identity key pair in
Ed25519 format.

	
abstract property namespace: str

	
	Return type

	str

	
abstract property bare_jid: str

	
	Return type

	str

	
abstract property device_id: int

	
	Return type

	int

	
abstract property identity_key: bytes

	
	Return type

	bytes

	
abstract __eq__(other)

	Check an object for equality with this Bundle instance.

	Parameters

	other (object) – The object to compare to this instance.

	Return type

	bool

	Returns

	Whether the other object is a bundle with the same contents as this instance.

Note

The order in which pre keys are included in the bundles does not matter.

	
abstract __hash__()

	Hash this instance in a manner that is consistent with __eq__().

	Return type

	int

	Returns

	An integer value representing this instance.

Module: identity_key_pair

	
class omemo.identity_key_pair.IdentityKeyPair

	Bases: ABC

The identity key pair associated to this device, shared by all backends.

There are following requirements for the identity key pair:

	It must be able to create and verify Ed25519-compatible signatures.

	It must be able to perform X25519-compatible Diffie-Hellman key agreements.

There are at least two different kinds of key pairs that can fulfill these requirements: Ed25519 key pairs
and Curve25519 key pairs. The birational equivalence of both curves can be used to “convert” one pair to
the other.

Both types of key pairs share the same private key, however instead of a private key, a seed can be used
which the private key is derived from using SHA-512. This is standard practice for Ed25519, where the
other 32 bytes of the SHA-512 seed hash are used as a nonce during signing. If a new key pair has to be
generated, this implementation generates a seed.

Note

This is the only actual cryptographic functionality offered by the core library. Everything else is
backend-specific.

	
LOG_TAG = 'omemo.core.identity_key_pair'

	

	
async static get(storage)

	Get the identity key pair.

	Parameters

	storage (Storage) – The storage for all OMEMO-related data.

	Return type

	IdentityKeyPair

	Returns

	The identity key pair, which has either been loaded from storage or newly generated.

Note

There is only one identity key pair for storage instance. All instances of this class refer to the
same storage locations, thus the same data.

	
abstract property is_seed: bool

	Returns:
Whether this is a IdentityKeyPairSeed.

	Return type

	bool

	
abstract property is_priv: bool

	Returns:
Whether this is a IdentityKeyPairPriv.

	Return type

	bool

	
abstract as_priv()

	
	Return type

	IdentityKeyPairPriv

	Returns

	An IdentityKeyPairPriv derived from this instance (if necessary).

	
abstract property identity_key: Ed25519Pub

	Returns:
The public part of this identity key pair, in Ed25519 format.

	Return type

	bytes

	
class omemo.identity_key_pair.IdentityKeyPairPriv(priv)

	Bases: IdentityKeyPair

An IdentityKeyPair represented by a private key.

	Parameters

	priv (Priv) –

	
__init__(priv)

	
	Parameters

	priv (bytes) – The Curve25519/Ed25519 private key.

	Return type

	None

	
property is_seed: bool

	Returns:
Whether this is a IdentityKeyPairSeed.

	Return type

	bool

	
property is_priv: bool

	Returns:
Whether this is a IdentityKeyPairPriv.

	Return type

	bool

	
as_priv()

	
	Return type

	IdentityKeyPairPriv

	Returns

	An IdentityKeyPairPriv derived from this instance (if necessary).

	
property identity_key: Ed25519Pub

	Returns:
The public part of this identity key pair, in Ed25519 format.

	Return type

	bytes

	
property priv: Priv

	Returns:
The Curve25519/Ed25519 private key.

	Return type

	bytes

	
class omemo.identity_key_pair.IdentityKeyPairSeed(seed)

	Bases: IdentityKeyPair

An IdentityKeyPair represented by a seed.

	Parameters

	seed (Seed) –

	
__init__(seed)

	
	Parameters

	seed (bytes) – The Curve25519/Ed25519 seed.

	Return type

	None

	
property is_seed: bool

	Returns:
Whether this is a IdentityKeyPairSeed.

	Return type

	bool

	
property is_priv: bool

	Returns:
Whether this is a IdentityKeyPairPriv.

	Return type

	bool

	
as_priv()

	
	Return type

	IdentityKeyPairPriv

	Returns

	An IdentityKeyPairPriv derived from this instance (if necessary).

	
property identity_key: Ed25519Pub

	Returns:
The public part of this identity key pair, in Ed25519 format.

	Return type

	bytes

	
property seed: Seed

	Returns:
The Curve25519/Ed25519 seed.

	Return type

	bytes

Module: message

	
class omemo.message.Content

	Bases: ABC

The encrypted content of an OMEMO-encrypted message. Contains for example the ciphertext, but can contain
other backend-specific data that is shared between all recipients.

	
abstract property empty: bool

	Returns:
Whether this instance corresponds to an empty OMEMO message purely used for protocol stability
reasons.

	Return type

	bool

	
class omemo.message.EncryptedKeyMaterial

	Bases: ABC

Encrypted key material. When decrypted, the key material can in turn be used to decrypt the content. One
collection of key material is included in an OMEMO-encrypted message per recipient. Defails are
backend-specific.

	
abstract property bare_jid: str

	
	Return type

	str

	
abstract property device_id: int

	
	Return type

	int

	
class omemo.message.KeyExchange

	Bases: ABC

Key exchange information, generated by the active part of the session building process, then transferred
to and consumed by the passive part of the session building process. Details are backend-specific.

	
abstract property identity_key: bytes

	
	Return type

	bytes

	
abstract builds_same_session(other)

	
	Parameters

	other (KeyExchange) – The other key exchange instance to compare to this instance.

	Return type

	bool

	Returns

	Whether the key exchange information stored in this instance and the key exchange information
stored in the other instance would build the same session.

	
class omemo.message.Message(namespace, bare_jid, device_id, content, keys)

	Bases: tuple

Simple structure representing an OMEMO-encrypted message.

	Parameters

	
	namespace (str) –

	bare_jid (str) –

	device_id (int) –

	content (Content) –

	keys (FrozenSet[Tuple[EncryptedKeyMaterial, Optional[KeyExchange]]]) –

	
property namespace

	Alias for field number 0

	
property bare_jid

	Alias for field number 1

	
property device_id

	Alias for field number 2

	
property content

	Alias for field number 3

	
property keys

	Alias for field number 4

	
class omemo.message.PlainKeyMaterial

	Bases: ABC

Key material which be used to decrypt the content. Defails are backend-specific.

Module: session

	
class omemo.session.Initiation(value)

	Bases: Enum

Enumeration identifying whether a session was built through active or passive session initiation.

	
ACTIVE: str = 'ACTIVE'

	

	
PASSIVE: str = 'PASSIVE'

	

	
class omemo.session.Session

	Bases: ABC

Class representing an OMEMO session. Used to encrypt/decrypt key material for/from a single
recipient/sender device in a perfectly forwared secure manner.

Warning

Changes to a session may only be persisted when store_session() is
called.

Warning

Multiple sessions for the same device can exist in memory, however only one session per device can
exist in storage. Which one of the in-memory sessions is persisted in storage is controlled by calling
the store_session() method.

Note

The API of the Session class was intentionally kept thin. All “complex” interactions with
session objects happen via methods of Backend. This allows backend
implementors to have the Session class be a simple “stupid” data holding structure type,
while all of the more complex logic is located in the implementation of the
Backend class itself. Backend implementations are obviously free to implement
logic on their respective Session implementations and forward calls to them from the
Backend methods.

	
abstract property namespace: str

	
	Return type

	str

	
abstract property bare_jid: str

	
	Return type

	str

	
abstract property device_id: int

	
	Return type

	int

	
abstract property initiation: Initiation

	Returns:
Whether this session was actively initiated or passively.

	Return type

	Initiation

	
abstract property confirmed: bool

	In case this session was built through active session initiation, this flag should indicate whether
the session initiation has been “confirmed”, i.e. at least one message was received and decrypted
using this session.

	Return type

	bool

	
abstract property key_exchange: KeyExchange

	Either the key exchange information received during passive session building, or the key exchange
information created as part of active session building. The key exchange information is needed by the
protocol for stability reasons, to make sure that all sides can build the session, even if messages
are lost or received out of order.

	Return type

	KeyExchange

	Returns

	The key exchange information associated with this session.

	
abstract property receiving_chain_length: Optional[int]

	Returns:
The length of the receiving chain, if it exists, used for own staleness detection.

	Return type

	Optional[int]

	
abstract property sending_chain_length: int

	Returns:
The length of the sending chain, used for staleness detection of other devices.

	Return type

	int

Module: session_manager

	
exception omemo.session_manager.SessionManagerException

	Bases: OMEMOException

Parent type for all exceptions specific to SessionManager.

	
exception omemo.session_manager.TrustDecisionFailed

	Bases: SessionManagerException

Raised by SessionManager._make_trust_decision() if the trust decisions that were queried somehow
failed. Indirectly raised by the encryption flow.

	
exception omemo.session_manager.StillUndecided

	Bases: SessionManagerException

Raised by SessionManager.encrypt() in case there are still undecided devices after a trust decision
was queried via SessionManager._make_trust_decision().

	
exception omemo.session_manager.NoEligibleDevices(bare_jids, *args)

	Bases: SessionManagerException

Raised by SessionManager.encrypt() in case none of the devices of one or more recipient are eligible
for encryption, for example due to distrust or bundle downloading failures.

	Parameters

	
	bare_jids (FrozenSet[str]) –

	args (object) –

	Return type

	None

	
__init__(bare_jids, *args)

	
	Parameters

	
	bare_jids (FrozenSet[str]) – The JIDs whose devices were not eligible. Accessible as an attribute of the returned
instance.

	args (object) –

	Return type

	None

	
exception omemo.session_manager.MessageNotForUs

	Bases: SessionManagerException

Raised by SessionManager.decrypt() in case the message to decrypt does not seem to be encrypting for
this device.

	
exception omemo.session_manager.SenderNotFound

	Bases: SessionManagerException

Raised by SessionManager.decrypt() in case the usual public information of the sending device could
not be downloaded.

	
exception omemo.session_manager.SenderDistrusted

	Bases: SessionManagerException

Raised by SessionManager.decrypt() in case the sending device is explicitly distrusted.

	
exception omemo.session_manager.NoSession

	Bases: SessionManagerException

Raised by SessionManager.decrypt() in case there is no session with the sending device, and a new
session can’t be built either.

	
exception omemo.session_manager.PublicDataInconsistency

	Bases: SessionManagerException

Raised by SessionManager.decrypt() in case inconsistencies were found in the public data of the
sending device.

	
exception omemo.session_manager.UnknownTrustLevel

	Bases: SessionManagerException

Raised by SessionManager._evaluate_custom_trust_level() if the custom trust level name to evaluate
is unknown. Indirectly raised by the encryption and decryption flows.

	
exception omemo.session_manager.UnknownNamespace

	Bases: SessionManagerException

Raised by various methods of SessionManager, in case the namespace to perform an operation under
is not known or the corresponding backend is not currently loaded.

	
exception omemo.session_manager.XMPPInteractionFailed

	Bases: SessionManagerException

Parent type for all exceptions related to network/XMPP interactions.

	
exception omemo.session_manager.BundleUploadFailed

	Bases: XMPPInteractionFailed

Raised by SessionManager._upload_bundle(), and indirectly by various methods of
SessionManager.

	
exception omemo.session_manager.BundleDownloadFailed

	Bases: XMPPInteractionFailed

Raised by SessionManager._download_bundle(), and indirectly by various methods of
SessionManager.

	
exception omemo.session_manager.BundleNotFound

	Bases: XMPPInteractionFailed

Raised by SessionManager._download_bundle(), and indirectly by various methods of
SessionManager.

	
exception omemo.session_manager.BundleDeletionFailed

	Bases: XMPPInteractionFailed

Raised by SessionManager._delete_bundle(), and indirectly by SessionManager.purge_backend().

	
exception omemo.session_manager.DeviceListUploadFailed

	Bases: XMPPInteractionFailed

Raised by SessionManager._upload_device_list(), and indirectly by various methods of
SessionManager.

	
exception omemo.session_manager.DeviceListDownloadFailed

	Bases: XMPPInteractionFailed

Raised by SessionManager._download_device_list(), and indirectly by various methods of
SessionManager.

	
exception omemo.session_manager.MessageSendingFailed

	Bases: XMPPInteractionFailed

Raised by SessionManager._send_message(), and indirectly by various methods of
SessionManager.

	
class omemo.session_manager.SessionManager

	Bases: ABC

The core of python-omemo. Manages your own key material and bundle, device lists, sessions with other
users and much more, all while being flexibly usable with different backends and transparenlty maintaining
a level of compatibility between the backends that allows you to maintain a single identity throughout all
of them. Easy APIs are provided to handle common use-cases of OMEMO-enabled XMPP clients, with one of the
primary goals being strict type safety.

Note

Most methods can raise StorageException in addition to those exceptions
listed explicitly.

Note

All parameters are treated as immutable unless explicitly noted otherwise.

Note

All usages of “identity key” in the public API refer to the public part of the identity key pair in
Ed25519 format. Otherwise, “identity key pair” is explicitly used to refer to the full key pair.

Note

The library was designed for use as part of an XMPP library/client. The API is shaped for XMPP and
comments/documentation contain references to XEPs and other XMPP-specific nomenclature. However, the
library can be used with any economy that provides similar functionality.

	
DEVICE_ID_MIN = 1

	

	
DEVICE_ID_MAX = 2147483647

	

	
STALENESS_MAGIC_NUMBER = 53

	

	
LOG_TAG = 'omemo.core'

	

	
async classmethod create(backends, storage, own_bare_jid, initial_own_label, undecided_trust_level_name, signed_pre_key_rotation_period=604800, pre_key_refill_threshold=99, async_framework=AsyncFramework.ASYNCIO)

	Load or create OMEMO backends. This method takes care of everything regarding the initialization of
OMEMO: generating a unique device id, uploading the bundle and adding the new device to the device
list. While doing so, it makes sure that all backends share the same identity key, so that a certain
level of compatibility between the backends can be achieved. If a backend was created before, this
method loads the backend from the storage instead of creating it.

	Parameters

	
	backends (List[Backend]) – The list of backends to use.

	storage (Storage) – The storage for all OMEMO-related data.

	own_bare_jid (str) – The own bare JID of the account this device belongs to.

	initial_own_label (Optional[str]) – The initial (optional) label to assign to this device if supported by any of
the backends.

	undecided_trust_level_name (str) – The name of the custom trust level to initialize the trust level with
when a new device is first encoutered. _evaluate_custom_trust_level() should evaluate
this custom trust level to UNDECIDED.

	signed_pre_key_rotation_period (int) – The rotation period for the signed pre key, in seconds. The
rotation period is recommended to be between one week (the default) and one month.

	pre_key_refill_threshold (int) – The number of pre keys that triggers a refill to 100. Defaults to 99,
which means that each pre key gets replaced with a new one right away. The threshold can not
be configured to lower than 25.

	async_framework (AsyncFramework) – The framework to use to create asynchronous tasks and perform asynchronous
waiting. Defaults to asyncio, since it’s part of the standard library. Make sure the
respective framework is installed when using something other than asyncio.

	Return type

	TypeVar(SessionManagerTypeT, bound= SessionManager)

	Returns

	A configured instance of SessionManager, with all backends loaded,
bundles published and device lists adjusted.

	Raises

	
	BundleUploadFailed – if a bundle upload failed. Forwarded from _upload_bundle().

	BundleDeletionFailed – if a bundle deletion failed. Forwarded from _delete_bundle().

	DeviceListUploadFailed – if a device list upload failed. Forwarded from
 _upload_device_list().

	DeviceListDownloadFailed – if a device list download failed. Forwarded from
 _download_device_list().

Warning

The library starts in history synchronization mode. Call after_history_sync() to return to
normal operation. Refer to the documentation of before_history_sync() and
after_history_sync() for details.

Warning

The library takes care of keeping online data in sync. That means, if the library is loaded
without a backend that was loaded before, it will remove all online data related to the missing
backend and as much of the offline data as possible (refer to purge_backend() for details).

Note

This method takes care of leaving the device lists in a consistent state. To do so, backends are
“initialized” one after the other. For each backend, the device list is updated as the very last
step, after everything else that could fail is done. This ensures that either all data is
consistent or the device list does not yet list the inconsistent device. If the creation of one
backend succeeds, the data is persisted in the storage before the next backend is created. This
guarantees that even if the next backend creation fails, the data is not lost and will be loaded
from the storage when calling this method again.

Note

The order of the backends can optionally be used by encrypt() as the order of priority, in
case a recipient device supports multiple backends. Refer to the documentation of encrypt()
for details.

	
async purge_backend(namespace)

	Purge a backend, removing both the online data (bundle, device list entry) and the offline data that
belongs to this backend. Note that the backend-specific offline data can only be purged if the
respective backend is currently loaded. This backend-specific removal can be triggered manually at any
time by calling the purge() method of the respecfive backend. If the
backend to purge is currently loaded, the method will unload it.

	Parameters

	namespace (str) – The XML namespace managed by the backend to purge.

	Raises

	
	BundleDeletionFailed – if a bundle deletion failed. Forwarded from _delete_bundle().

	DeviceListUploadFailed – if a device list upload failed. Forwarded from
 _upload_device_list().

	DeviceListDownloadFailed – if a device list download failed. Forwarded from
 _download_device_list().

	Return type

	None

Warning

Make sure to unsubscribe from updates to all device lists before calling this method.

Note

If the backend-specific offline data is not purged, the backend can be loaded again at a later
point and the online data can be restored. This is what happens when a backend that was previously
loaded is omitted from create().

	Return type

	None

	Parameters

	namespace (str) –

	
async purge_bare_jid(bare_jid)

	Delete all data corresponding to an XMPP account. This includes the device list, trust information and
all sessions across all loaded backends. The backend-specific data can be removed at any time by
calling the purge_bare_jid() method of the respective backend.

	Parameters

	bare_jid (str) – Delete all data corresponding to this bare JID.

	Return type

	None

	
async ensure_data_consistency()

	Ensure that the online data for all loaded backends is consistent with the offline data. Refreshes
device lists of all backends while making sure that this device is included in all of them. Downloads
the bundle for each backend, compares it with the local bundle contents, and uploads the local bundle
if necessary.

	Raises

	
	DeviceListDownloadFailed – if a device list download failed. Forwarded from
 _download_device_list().

	DeviceListUploadFailed – if a device list upload failed. Forwarded from update_device_list().

	BundleUploadFailed – if a bundle upload failed. Forwarded from _upload_bundle().

	Return type

	None

Note

This method is not called automatically by the library, since under normal working conditions,
online and offline data should never desync. However, if clients can spare the network traffic, it
is recommended to call this method e.g. once after starting the library and possibly in other
scenarios/at regular intervals too.

	Return type

	None

	
abstract async static _upload_bundle(bundle)

	Upload the bundle corresponding to this device, overwriting any previously published bundle data.

	Parameters

	bundle (Bundle) – The bundle to publish.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	BundleUploadFailed – if the upload failed. Feel free to raise a subclass instead.

	Return type

	None

Note

This method is called from create(), before create() has returned the instance. Thus,
modifications to the object (self, in case of subclasses) may not have happened when this
method is called.

Note

This method must be able to handle at least the namespaces of all loaded backends.

	Return type

	None

	Parameters

	bundle (Bundle) –

	
abstract async static _download_bundle(namespace, bare_jid, device_id)

	Download the bundle corresponding to a specific device.

	Parameters

	
	namespace (str) – The XML namespace to execute this operation under.

	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	Return type

	Bundle

	Returns

	The bundle.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	BundleDownloadFailed – if the download failed. Feel free to raise a subclass instead. Only raise
 this on a technical bundle download failure. If the bundle just doesn’t exist, raise
 BundleNotFound instead.

	BundleNotFound – if the bundle doesn’t exist.

Note

This method is called from create(), before create() has returned the instance. Thus,
modifications to the object (self, in case of subclasses) may not have happened when this
method is called.

Note

This method must be able to handle at least the namespaces of all loaded backends.

	
abstract async static _delete_bundle(namespace, device_id)

	Delete the bundle corresponding to this device.

	Parameters

	
	namespace (str) – The XML namespace to execute this operation under.

	device_id (int) – The id of this device.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	BundleDeletionFailed – if the deletion failed. Feel free to raise a subclass instead. Only raise
 this on a technical bundle deletion failure. If the bundle just doesn’t exist, don’t raise.

	Return type

	None

Note

This method is called from create(), before create() has returned the instance. Thus,
modifications to the object (self, in case of subclasses) may not have happened when this
method is called.

Note

This method must be able to handle at least the namespaces of all loaded backends. In case of
backend purging via purge_backend(), the corresponding namespace must be supported even if
the backend is not currently loaded.

	Return type

	None

	Parameters

	
	namespace (str) –

	device_id (int) –

	
abstract async static _upload_device_list(namespace, device_list)

	Upload the device list for this XMPP account.

	Parameters

	
	namespace (str) – The XML namespace to execute this operation under.

	device_list (Dict[int, Optional[str]]) – The device list to upload. Mapping from device id to optional label.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	DeviceListUploadFailed – if the upload failed. Feel free to raise a subclass instead.

	Return type

	None

Note

This method is called from create(), before create() has returned the instance. Thus,
modifications to the object (self, in case of subclasses) may not have happened when this
method is called.

Note

This method must be able to handle at least the namespaces of all loaded backends.

	Return type

	None

	Parameters

	
	namespace (str) –

	device_list (Dict[int, Optional[str]]) –

	
abstract async static _download_device_list(namespace, bare_jid)

	Download the device list of a specific XMPP account.

	Parameters

	
	namespace (str) – The XML namespace to execute this operation under.

	bare_jid (str) – The bare JID of the XMPP account.

	Return type

	Dict[int, Optional[str]]

	Returns

	The device list as a dictionary, mapping the device ids to their optional label.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	DeviceListDownloadFailed – if the download failed. Feel free to raise a subclass instead. Only
 raise this on a technical device list download failure. If the device list just doesn’t exist,
 return and empty list instead.

Note

This method is called from create(), before create() has returned the instance. Thus,
modifications to the object (self, in case of subclasses) may not have happened when this
method is called.

Note

This method must be able to handle at least the namespaces of all loaded backends.

	
abstract async _evaluate_custom_trust_level(device)

	Evaluate a custom trust level to one of the three core trust levels:

	TRUSTED: This device is trusted, encryption/decryption of messages
to/from it is allowed.

	DISTRUSTED: This device is explicitly not trusted, do not
encrypt/decrypt messages to/from it.

	UNDECIDED: A trust decision is yet to be made. It is not clear
whether it is okay to encrypt messages to it, however decrypting messages from it is allowed.

	Parameters

	device (DeviceInformation) – Information about the device, including the custom trust level name to translate.

	Return type

	TrustLevel

	Returns

	The core trust level corresponding to the custom trust level.

	Raises

	UnknownTrustLevel – if a custom trust level with this name is not known. Feel free to raise a
 subclass instead.

	
abstract async _make_trust_decision(undecided, identifier)

	Make a trust decision on a set of undecided identity keys. The trust decisions are expected to be
persisted by calling set_trust().

	Parameters

	
	undecided (FrozenSet[DeviceInformation]) – A set of devices that require trust decisions.

	identifier (Optional[str]) – A piece of application-specific information that callers can pass to encrypt(),
which is then forwarded here unaltered. This can be used, for example, by instant messaging
clients, to identify the chat tab which triggered the call to encrypt() and subsequently
this call to _make_trust_decision().

	Raises

	TrustDecisionFailed – if for any reason the trust decision failed/could not be completed. Feel free
 to raise a subclass instead.

	Return type

	None

Note

This is called when the encryption needs to know whether it is allowed to encrypt for these
devices or not. When this method returns, all previously undecided trust levels should have been
replaced by calling set_trust() with a different trust level. If they are not replaced or
still evaluate to the undecided trust level after the call, the encryption will fail with an
exception. See encrypt() for details.

	Return type

	None

	Parameters

	
	undecided (FrozenSet[DeviceInformation]) –

	identifier (Optional[str]) –

	
abstract async static _send_message(message, bare_jid)

	Send an OMEMO-encrypted message. This is required for various automated behaviours to improve the
overall stability of the protocol, for example:

	Automatic handshake completion, by responding to incoming key exchanges.

	Automatic heartbeat messages to forward the ratchet if many messages were received without a
(manual) response, to assure forward secrecy (aka staleness prevention). The number of messages
required to trigger this behaviour is hardcoded in STALENESS_MAGIC_NUMBER.

	Automatic session initiation if an encrypted message is received but no session exists for that
device.

	Backend-dependent session healing mechanisms.

	Backend-dependent empty messages to notify other devices about potentially “broken” sessions.

Note that messages sent here do not contain any content, they just transport key material.

	Parameters

	
	message (Message) – The message to send.

	bare_jid (str) – The bare JID to send the message to.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	MessageSendingFailed – if for any reason the message could not be sent. Feel free to raise a
 subclass instead.

	Return type

	None

	
async update_device_list(namespace, bare_jid, device_list)

	Update the device list of a specific bare JID, e.g. after receiving an update for the XMPP account
from PEP [https://xmpp.org/extensions/xep-0163.html].

	Parameters

	
	namespace (str) – The XML namespace to execute this operation under.

	bare_jid (str) – The bare JID of the XMPP account.

	device_list (Dict[int, Optional[str]]) – The updated device list. Mapping from device id to optional label.

	Raises

	
	UnknownNamespace – if the backend to handle the message is not currently loaded.

	DeviceListUploadFailed – if a device list upload failed. An upload can happen if the device list
 update is for the own bare JID and does not include the own device. Forwarded from
 _upload_device_list().

	Return type

	None

	
async refresh_device_list(namespace, bare_jid)

	Manually trigger the refresh of a device list.

	Parameters

	
	namespace (str) – The XML namespace to execute this operation under.

	bare_jid (str) – The bare JID of the XMPP account.

	Raises

	
	UnknownNamespace – if the namespace is unknown.

	DeviceListDownloadFailed – if the device list download failed. Forwarded from
 _download_device_list().

	DeviceListUploadFailed – if a device list upload failed. An upload can happen if the device list
 update is for the own bare JID and does not include the own device. Forwarded from
 update_device_list().

	Return type

	None

	
async set_trust(bare_jid, identity_key, trust_level_name)

	Set the trust level for an identity key.

	Parameters

	
	bare_jid (str) – The bare JID of the XMPP account this identity key belongs to.

	identity_key (bytes) – The identity key.

	trust_level_name (str) – The custom trust level to set for the identity key.

	Return type

	None

	
async replace_sessions(device)

	Manually replace all sessions for a device. Can be used if sessions are suspected to be broken. This
method automatically notifies the other end about the new sessions, so that hopefully no messages are
lost.

	Parameters

	device (DeviceInformation) – The device whose sessions to replace.

	Return type

	Dict[str, OMEMOException]

	Returns

	Information about exceptions that happened during session replacement attempts. A mapping from the
namespace of the backend for which the replacement failed, to the reason of failure. If the reason
is a StorageException, there is a high change that the session was left in
an inconsistent state. Other reasons imply that the session replacement failed before having any
effect on the state of either side.

Warning

This method can not guarantee that sessions are left in a consistent state. For example, if a
notification message for the recipient is lost or heavily delayed, the recipient may not know
about the new session and keep using the old one. Only use this method to attempt replacement of
sessions that already seem broken. Do not attempt to replace healthy sessions.

Warning

This method does not optimize towards minimizing network usage. One notification message is sent
per session to replace, the notifications are not bundled. This is to minimize the negative impact
of network failure.

	
async get_sending_chain_length(device)

	Get the sending chain lengths of all sessions with a device. Can be used for external staleness
detection logic.

	Parameters

	device (DeviceInformation) – The device.

	Return type

	Dict[str, Optional[int]]

	Returns

	A mapping from namespace to sending chain length. None for the sending chain length implies that
there is no session with the device for that backend.

	
async set_own_label(own_label)

	Replace the label for this device, if supported by any of the backends.

	Parameters

	own_label (Optional[str]) – The new (optional) label for this device.

	Raises

	
	DeviceListUploadFailed – if a device list upload failed. Forwarded from
 _upload_device_list().

	DeviceListDownloadFailed – if a device list download failed. Forwarded from
 _download_device_list().

	Return type

	None

Note

It is recommended to keep the length of the label under 53 unicode code points.

	Return type

	None

	Parameters

	own_label (Optional[str]) –

	
async get_device_information(bare_jid)

	
	Parameters

	bare_jid (str) – Get information about the devices of the XMPP account belonging to this bare JID.

	Return type

	FrozenSet[DeviceInformation]

	Returns

	Information about each device of bare_jid. The information includes the device id, the identity
key, the trust level, whether the device is active and, if supported by any of the backends, the
optional label. Returns information about all known devices, regardless of the backend they belong
to.

Note

Only returns information about cached devices. The cache, however, should be up to date if
PEP [https://xmpp.org/extensions/xep-0163.html] updates are correctly fed to
update_device_list(). A manual update of a device list can be triggered using
refresh_device_list() if needed.

Warning

This method attempts to download the bundle of devices whose corresponding identity key is not
known yet. In case the information can not be fetched due to bundle download failures, the device
is not included in the returned set.

	
async get_own_device_information()

	Variation of get_device_information() for convenience.

	Return type

	Tuple[DeviceInformation, FrozenSet[DeviceInformation]]

	Returns

	A tuple, where the first entry is information about this device and the second entry contains
information about the other devices of the own bare JID.

	
static format_identity_key(identity_key)

	
	Parameters

	identity_key (bytes) – The identity key to generate the fingerprint of.

	Return type

	List[str]

	Returns

	The fingerprint of the identity key in its Curve25519 form as per the specficiaton, in eight
groups of eight lowercase hex chars each. Consider applying
Consistent Color Generation [https://xmpp.org/extensions/xep-0392.html] to each individual
group when displaying the fingerprint, if applicable.

	
before_history_sync()

	Sets the library into “history synchronization mode”. In this state, the library assumes that it was
offline before and is now running catch-up with whatever happened during the offline phase. Make sure
to call after_history_sync() when the history synchronization (if any) is done, so that the
library can change to normal working behaviour again. The library automatically enters history
synchronization mode when loaded via create(). Calling this method again when already in history
synchronization mode has no effect.

Internally, the library does the following things differently during history synchronization:

	Pre keys are kept around during history synchronization, to account for the (hopefully rather
hypothetical) case that two or more parties selected the same pre key to initiate a session with
this device while it was offline. When history synchronization ends, all pre keys that were kept
around are deleted and the library returns to normal behaviour.

	Empty messages to “complete” sessions or prevent staleness are deferred until after the
synchronization is done. Only one empty message is sent per session when exiting the history
synchronization mode.

Note

While in history synchronization mode, the library can process live events too.

	Return type

	None

	
async after_history_sync()

	If the library is in “history synchronization mode” started by create() or
before_history_sync(), calling this makes it return to normal working behaviour. Make sure to
call this as soon as history synchronization (if any) is done.

	Raises

	MessageSendingFailed – if one of the queued empty messages could not be sent. Forwarded from
 _send_message().

	Return type

	None

	
async encrypt(bare_jids, plaintext, backend_priority_order=None, identifier=None)

	Encrypt some plaintext for a set of recipients.

	Parameters

	
	bare_jids (FrozenSet[str]) – The bare JIDs of the intended recipients.

	plaintext (Dict[str, bytes]) – The plaintext to encrypt for the recipients. Since different backends may use different
kinds of plaintext, for example just the message body versus a whole stanza using
Stanza Content Encryption [https://xmpp.org/extensions/xep-0420.html], this parameter is a
dictionary, where the keys are backend namespaces and the values are the plaintext for each
specific backend. The plaintext has to be supplied for each backend.

	backend_priority_order (Optional[List[str]]) – If a recipient device supports multiple versions of OMEMO, this parameter
decides which version to prioritize. If None is supplied, the order of backends as passed
to create() is assumed as the order of priority. If a list of namespaces is supplied,
the first namespace supported by the recipient is chosen. Lower index means higher priority.

	identifier (Optional[str]) – A value that is passed on to _make_trust_decision() in case a trust decision is
required for any of the recipient devices. This value is not processed or altered, it is
simply passed through. Refer to the documentation of _make_trust_decision() for details.

	Return type

	Tuple[Dict[Message, PlainKeyMaterial], FrozenSet[EncryptionError]]

	Returns

	A mapping with one message per backend as the keys encrypted for each device of each recipient
and for other devices of this account, and the plain key material that was used to encrypt the
content of the respective message as values. This plain key material can be used to implement
things like legacy OMEMO’s KeyTransportMessages. Next to the messages, a set of non-critical
errors encountered during encryption are returned.

	Raises

	
	UnknownNamespace – if the backend priority order list contains a namespace of a backend that is not
 currently available.

	UnknownTrustLevel – if an unknown custom trust level name is encountered. Forwarded from
 _evaluate_custom_trust_level().

	TrustDecisionFailed – if for any reason the trust decision for undecided devices failed/could not
 be completed. Forwarded from _make_trust_decision().

	StillUndecided – if the trust level for one of the recipient devices still evaluates to undecided,
 even after _make_trust_decision() was called to decide on the trust.

	NoEligibleDevices – if at least one of the intended recipients does not have a single device which
 qualifies for encryption. Either the recipient does not advertize any OMEMO-enabled devices or
 all devices were disqualified due to missing trust or failure to download their bundles.

	KeyExchangeFailed – in case there is an error during the key exchange required for session
 building. Forwarded from build_session_active().

Note

The own JID is implicitly added to the set of recipients, there is no need to list it manually.

	
async decrypt(message)

	Decrypt a message.

	Parameters

	message (Message) – The message to decrypt.

	Return type

	Tuple[Optional[bytes], DeviceInformation, PlainKeyMaterial]

	Returns

	A triple, where the first entry is the decrypted plaintext and the second entry contains
information about the device that sent the message. The plaintext is optional and will be None
in case the message was an empty OMEMO message purely used for protocol stability reasons. The
third entry is the plain key meterial transported by the message, which can be used to implement
functionality like legacy OMEMO’s KeyTransportMessages.

	Raises

	
	UnknownNamespace – if the backend to handle the message is not currently loaded.

	UnknownTrustLevel – if an unknown custom trust level name is encountered. Forwarded from
 _evaluate_custom_trust_level().

	KeyExchangeFailed – in case a new session is built while decrypting this message, and there is an
 error during the key exchange that’s part of the session building. Forwarded from
 build_session_passive().

	MessageNotForUs – in case the message does not seem to be encrypted for us.

	SenderNotFound – in case the public information about the sending device could not be found or is
 incomplete.

	SenderDistrusted – in case the identity key corresponding to the sending device is explicitly
 distrusted.

	NoSession – in case there is no session with the sending device, and the information required to
 build a new session is not included either.

	PublicDataInconsistency – in case there is an inconsistency in the public data of the sending
 device, which can affect the trust status.

	MessageSendingFailed – if an attempt to send an empty OMEMO message failed. Forwarded from
 _send_message().

	DecryptionFailed – in case of backend-specific failures during decryption. Forwarded from the
 respective backend implementation.

Warning

Do NOT implement any automatic reaction to decryption failures, those automatic reactions are
transparently handled by the library! Do notify the user about decryption failures though, if
applicable.

Note

If the trust level of the sender evaluates to undecided, the message is decrypted.

Note

May send empty OMEMO messages to “complete” key exchanges or prevent staleness.

Module: storage

	
class omemo.storage.Just(value)

	Bases: Maybe[ValueTypeT]

A Maybe that does hold a value.

	
__init__(value)

	Initialize a Just, representing a Maybe that holds a value.

	Parameters

	value (TypeVar(ValueTypeT)) – The value to store in this Just.

	Return type

	None

	
property is_just: bool

	Returns:
Whether this is a Just.

	Return type

	bool

	
property is_nothing: bool

	Returns:
Whether this is a Nothing.

	Return type

	bool

	
from_just()

	
	Return type

	TypeVar(ValueTypeT)

	Returns

	The value if this is a Just.

	Raises

	NothingException – if this is a Nothing.

	
maybe(default)

	
	Parameters

	default (TypeVar(DefaultTypeT)) – The value to return if this is in instance of Nothing.

	Return type

	TypeVar(ValueTypeT)

	Returns

	The value if this is a Just, or the default value if this is a Nothing. The
default is returned by reference in that case.

	
fmap(function)

	Apply a mapping function.

	Parameters

	function (Callable[[TypeVar(ValueTypeT)], TypeVar(MappedValueTypeT)]) – The mapping function.

	Return type

	Just[MappedValueTypeT]

	Returns

	A new Just containing the mapped value if this is a Just. A new Nothing
if this is a Nothing.

	
class omemo.storage.Maybe(*args, **kwds)

	Bases: ABC, Generic[ValueTypeT]

typing’s Optional[A] is just an alias for Union[None, A], which means if A is a union itself that
allows None, the Optional[A] doesn’t add anything. E.g. Optional[Optional[X]] = Optional[X] is true
for any type X. This Maybe class actually differenciates whether a value is set or not.

All incoming and outgoing values or cloned using copy.deepcopy(), such that values stored in a Maybe
instance are not affected by outside application logic.

	
abstract property is_just: bool

	Returns:
Whether this is a Just.

	Return type

	bool

	
abstract property is_nothing: bool

	Returns:
Whether this is a Nothing.

	Return type

	bool

	
abstract from_just()

	
	Return type

	TypeVar(ValueTypeT)

	Returns

	The value if this is a Just.

	Raises

	NothingException – if this is a Nothing.

	
abstract maybe(default)

	
	Parameters

	default (TypeVar(DefaultTypeT)) – The value to return if this is in instance of Nothing.

	Return type

	Union[TypeVar(ValueTypeT), TypeVar(DefaultTypeT)]

	Returns

	The value if this is a Just, or the default value if this is a Nothing. The
default is returned by reference in that case.

	
abstract fmap(function)

	Apply a mapping function.

	Parameters

	function (Callable[[TypeVar(ValueTypeT)], TypeVar(MappedValueTypeT)]) – The mapping function.

	Return type

	Maybe[MappedValueTypeT]

	Returns

	A new Just containing the mapped value if this is a Just. A new Nothing
if this is a Nothing.

	
class omemo.storage.Nothing

	Bases: Maybe[ValueTypeT]

A Maybe that does not hold a value.

	
__init__()

	Initialize a Nothing, representing an empty Maybe.

	Return type

	None

	
property is_just: bool

	Returns:
Whether this is a Just.

	Return type

	bool

	
property is_nothing: bool

	Returns:
Whether this is a Nothing.

	Return type

	bool

	
from_just()

	
	Return type

	TypeVar(ValueTypeT)

	Returns

	The value if this is a Just.

	Raises

	NothingException – if this is a Nothing.

	
maybe(default)

	
	Parameters

	default (TypeVar(DefaultTypeT)) – The value to return if this is in instance of Nothing.

	Return type

	TypeVar(DefaultTypeT)

	Returns

	The value if this is a Just, or the default value if this is a Nothing. The
default is returned by reference in that case.

	
fmap(function)

	Apply a mapping function.

	Parameters

	function (Callable[[TypeVar(ValueTypeT)], TypeVar(MappedValueTypeT)]) – The mapping function.

	Return type

	Nothing[MappedValueTypeT]

	Returns

	A new Just containing the mapped value if this is a Just. A new Nothing
if this is a Nothing.

	
exception omemo.storage.NothingException

	Bases: Exception

Raised by Maybe.from_just(), in case the Maybe is a Nothing.

	
class omemo.storage.Storage(disable_cache=False)

	Bases: ABC

A simple key/value storage class with optional caching (on by default). Keys can be any Python string,
values any JSON-serializable structure.

Warning

Writing (and deletion) operations must be performed right away, before returning from the method. Such
operations must not be cached or otherwise deferred.

Warning

All parameters must be treated as immutable unless explicitly noted otherwise.

Note

The Maybe type performs the additional job of cloning stored and returned values, which
essential to decouple the cached values from the application logic.

	Parameters

	disable_cache (bool) –

	
__init__(disable_cache=False)

	Configure caching behaviour of the storage.

	Parameters

	disable_cache (bool) – Whether to disable the cache, which is on by default. Use this parameter if your
storage implementation handles caching itself, to avoid pointless double caching.

	
abstract async _load(key)

	Load a value.

	Parameters

	key (str) – The key identifying the value.

	Return type

	Maybe[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]]]]

	Returns

	The loaded value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Feel free to raise a subclass instead.

	
abstract async _store(key, value)

	Store a value.

	Parameters

	
	key (str) – The key identifying the value.

	value (Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]]]) – The value to store under the given key.

	Raises

	StorageException – if any kind of storage operation failed. Feel free to raise a subclass instead.

	Return type

	None

	
abstract async _delete(key)

	Delete a value, if it exists.

	Parameters

	key (str) – The key identifying the value to delete.

	Raises

	StorageException – if any kind of storage operation failed. Feel free to raise a subclass instead.
 Do not raise if the key doesn’t exist.

	Return type

	None

	
async load(key)

	Load a value.

	Parameters

	key (str) – The key identifying the value.

	Return type

	Maybe[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]]]]

	Returns

	The loaded value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _load().

	
async store(key, value)

	Store a value.

	Parameters

	
	key (str) – The key identifying the value.

	value (Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]], Mapping[str, Union[None, float, int, str, bool, List[Union[None, float, int, str, bool]], Mapping[str, Union[None, float, int, str, bool]]]]]]]) – The value to store under the given key.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _store().

	Return type

	None

	
async delete(key)

	Delete a value, if it exists.

	Parameters

	key (str) – The key identifying the value to delete.

	Raises

	StorageException – if any kind of storage operation failed. Does not raise if the key doesn’t
 exist. Forwarded from _delete().

	Return type

	None

	
async store_bytes(key, value)

	Variation of store() for storing specifically bytes values.

	Parameters

	
	key (str) – The key identifying the value.

	value (bytes) – The value to store under the given key.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _store().

	Return type

	None

	
async load_primitive(key, primitive)

	Variation of load() for loading specifically primitive values.

	Parameters

	
	key (str) – The key identifying the value.

	primitive (Type[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]) – The primitive type of the value.

	Return type

	Maybe[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]

	Returns

	The loaded and type-checked value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _load().

	
async load_bytes(key)

	Variation of load() for loading specifically bytes values.

	Parameters

	key (str) – The key identifying the value.

	Return type

	Maybe[bytes]

	Returns

	The loaded and type-checked value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _load().

	
async load_optional(key, primitive)

	Variation of load() for loading specifically optional primitive values.

	Parameters

	
	key (str) – The key identifying the value.

	primitive (Type[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]) – The primitive type of the optional value.

	Return type

	Maybe[Optional[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]]

	Returns

	The loaded and type-checked value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _load().

	
async load_list(key, primitive)

	Variation of load() for loading specifically lists of primitive values.

	Parameters

	
	key (str) – The key identifying the value.

	primitive (Type[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]) – The primitive type of the list elements.

	Return type

	Maybe[List[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]]

	Returns

	The loaded and type-checked value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _load().

	
async load_dict(key, primitive)

	Variation of load() for loading specifically dictionaries of primitive values.

	Parameters

	
	key (str) – The key identifying the value.

	primitive (Type[TypeVar(PrimitiveTypeT, None, float, int, str, bool)]) – The primitive type of the dictionary values.

	Return type

	Maybe[Dict[str, TypeVar(PrimitiveTypeT, None, float, int, str, bool)]]

	Returns

	The loaded and type-checked value, if it exists.

	Raises

	StorageException – if any kind of storage operation failed. Forwarded from _load().

	
exception omemo.storage.StorageException

	Bases: OMEMOException

Parent type for all exceptions specifically raised by methods of Storage.

Module: types

	
class omemo.types.AsyncFramework(value)

	Bases: Enum

Frameworks for asynchronous code supported by python-omemo.

	
ASYNCIO: str = 'ASYNCIO'

	

	
TWISTED: str = 'TWISTED'

	

	
class omemo.types.DeviceInformation(namespaces, active, bare_jid, device_id, identity_key, trust_level_name, label)

	Bases: tuple

Structure containing information about a single OMEMO device.

	Parameters

	
	namespaces (FrozenSet[str]) –

	active (FrozenSet[Tuple[str, bool]]) –

	bare_jid (str) –

	device_id (int) –

	identity_key (bytes) –

	trust_level_name (str) –

	label (Optional[str]) –

	
property namespaces

	Alias for field number 0

	
property active

	Alias for field number 1

	
property bare_jid

	Alias for field number 2

	
property device_id

	Alias for field number 3

	
property identity_key

	Alias for field number 4

	
property trust_level_name

	Alias for field number 5

	
property label

	Alias for field number 6

	
exception omemo.types.OMEMOException

	Bases: Exception

Parent type for all custom exceptions in this library.

	
class omemo.types.TrustLevel(value)

	Bases: Enum

The three core trust levels.

	
TRUSTED: str = 'TRUSTED'

	

	
DISTRUSTED: str = 'DISTRUSTED'

	

	
UNDECIDED: str = 'UNDECIDED'

	

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 omemo	

 	
 	
 omemo.backend	

 	
 	
 omemo.bundle	

 	
 	
 omemo.identity_key_pair	

 	
 	
 omemo.message	

 	
 	
 omemo.session	

 	
 	
 omemo.session_manager	

 	
 	
 omemo.storage	

 	
 	
 omemo.types	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | X

_

 	
 	__eq__() (omemo.bundle.Bundle method)

 	__hash__() (omemo.bundle.Bundle method)

 	__init__() (omemo.backend.Backend method)

 	(omemo.identity_key_pair.IdentityKeyPairPriv method)

 	(omemo.identity_key_pair.IdentityKeyPairSeed method)

 	(omemo.session_manager.NoEligibleDevices method)

 	(omemo.storage.Just method)

 	(omemo.storage.Nothing method)

 	(omemo.storage.Storage method)

 	_delete() (omemo.storage.Storage method)

 	
 	_delete_bundle() (omemo.session_manager.SessionManager static method)

 	_download_bundle() (omemo.session_manager.SessionManager static method)

 	_download_device_list() (omemo.session_manager.SessionManager static method)

 	_evaluate_custom_trust_level() (omemo.session_manager.SessionManager method)

 	_load() (omemo.storage.Storage method)

 	_make_trust_decision() (omemo.session_manager.SessionManager method)

 	_send_message() (omemo.session_manager.SessionManager static method)

 	_store() (omemo.storage.Storage method)

 	_upload_bundle() (omemo.session_manager.SessionManager static method)

 	_upload_device_list() (omemo.session_manager.SessionManager static method)

A

 	
 	ACTIVE (omemo.session.Initiation attribute)

 	active (omemo.types.DeviceInformation property)

 	after_history_sync() (omemo.session_manager.SessionManager method)

 	as_priv() (omemo.identity_key_pair.IdentityKeyPair method)

 	(omemo.identity_key_pair.IdentityKeyPairPriv method)

 	(omemo.identity_key_pair.IdentityKeyPairSeed method)

 	
 	AsyncFramework (class in omemo.types)

 	ASYNCIO (omemo.types.AsyncFramework attribute)

B

 	
 	Backend (class in omemo.backend)

 	BackendException

 	bare_jid (omemo.bundle.Bundle property)

 	(omemo.message.EncryptedKeyMaterial property)

 	(omemo.message.Message property)

 	(omemo.session.Session property)

 	(omemo.types.DeviceInformation property)

 	before_history_sync() (omemo.session_manager.SessionManager method)

 	
 	build_session_active() (omemo.backend.Backend method)

 	build_session_passive() (omemo.backend.Backend method)

 	builds_same_session() (omemo.message.KeyExchange method)

 	Bundle (class in omemo.bundle)

 	BundleDeletionFailed

 	BundleDownloadFailed

 	BundleNotFound

 	BundleUploadFailed

C

 	
 	confirmed (omemo.session.Session property)

 	Content (class in omemo.message)

 	
 	content (omemo.message.Message property)

 	create() (omemo.session_manager.SessionManager class method)

D

 	
 	decrypt() (omemo.session_manager.SessionManager method)

 	decrypt_key_material() (omemo.backend.Backend method)

 	decrypt_plaintext() (omemo.backend.Backend method)

 	DecryptionFailed

 	delete() (omemo.storage.Storage method)

 	delete_hidden_pre_keys() (omemo.backend.Backend method)

 	delete_pre_key() (omemo.backend.Backend method)

 	device_id (omemo.bundle.Bundle property)

 	(omemo.message.EncryptedKeyMaterial property)

 	(omemo.message.Message property)

 	(omemo.session.Session property)

 	(omemo.types.DeviceInformation property)

 	
 	DEVICE_ID_MAX (omemo.session_manager.SessionManager attribute)

 	DEVICE_ID_MIN (omemo.session_manager.SessionManager attribute)

 	DeviceInformation (class in omemo.types)

 	DeviceListDownloadFailed

 	DeviceListUploadFailed

 	DISTRUSTED (omemo.types.TrustLevel attribute)

E

 	
 	empty (omemo.message.Content property)

 	encrypt() (omemo.session_manager.SessionManager method)

 	encrypt_empty() (omemo.backend.Backend method)

 	
 	encrypt_key_material() (omemo.backend.Backend method)

 	encrypt_plaintext() (omemo.backend.Backend method)

 	EncryptedKeyMaterial (class in omemo.message)

 	ensure_data_consistency() (omemo.session_manager.SessionManager method)

F

 	
 	fmap() (omemo.storage.Just method)

 	(omemo.storage.Maybe method)

 	(omemo.storage.Nothing method)

 	
 	format_identity_key() (omemo.session_manager.SessionManager static method)

 	from_just() (omemo.storage.Just method)

 	(omemo.storage.Maybe method)

 	(omemo.storage.Nothing method)

G

 	
 	generate_pre_keys() (omemo.backend.Backend method)

 	get() (omemo.identity_key_pair.IdentityKeyPair static method)

 	get_bundle() (omemo.backend.Backend method)

 	
 	get_device_information() (omemo.session_manager.SessionManager method)

 	get_num_visible_pre_keys() (omemo.backend.Backend method)

 	get_own_device_information() (omemo.session_manager.SessionManager method)

 	get_sending_chain_length() (omemo.session_manager.SessionManager method)

H

 	
 	hide_pre_key() (omemo.backend.Backend method)

I

 	
 	identity_key (omemo.bundle.Bundle property)

 	(omemo.identity_key_pair.IdentityKeyPair property)

 	(omemo.identity_key_pair.IdentityKeyPairPriv property)

 	(omemo.identity_key_pair.IdentityKeyPairSeed property)

 	(omemo.message.KeyExchange property)

 	(omemo.types.DeviceInformation property)

 	IdentityKeyPair (class in omemo.identity_key_pair)

 	IdentityKeyPairPriv (class in omemo.identity_key_pair)

 	IdentityKeyPairSeed (class in omemo.identity_key_pair)

 	Initiation (class in omemo.session)

 	initiation (omemo.session.Session property)

 	
 	is_just (omemo.storage.Just property)

 	(omemo.storage.Maybe property)

 	(omemo.storage.Nothing property)

 	is_nothing (omemo.storage.Just property)

 	(omemo.storage.Maybe property)

 	(omemo.storage.Nothing property)

 	is_priv (omemo.identity_key_pair.IdentityKeyPair property)

 	(omemo.identity_key_pair.IdentityKeyPairPriv property)

 	(omemo.identity_key_pair.IdentityKeyPairSeed property)

 	is_seed (omemo.identity_key_pair.IdentityKeyPair property)

 	(omemo.identity_key_pair.IdentityKeyPairPriv property)

 	(omemo.identity_key_pair.IdentityKeyPairSeed property)

J

 	
 	Just (class in omemo.storage)

K

 	
 	key_exchange (omemo.session.Session property)

 	KeyExchange (class in omemo.message)

 	
 	KeyExchangeFailed

 	keys (omemo.message.Message property)

L

 	
 	label (omemo.types.DeviceInformation property)

 	load() (omemo.storage.Storage method)

 	load_bytes() (omemo.storage.Storage method)

 	load_dict() (omemo.storage.Storage method)

 	load_list() (omemo.storage.Storage method)

 	
 	load_optional() (omemo.storage.Storage method)

 	load_primitive() (omemo.storage.Storage method)

 	load_session() (omemo.backend.Backend method)

 	LOG_TAG (omemo.identity_key_pair.IdentityKeyPair attribute)

 	(omemo.session_manager.SessionManager attribute)

M

 	
 	max_num_per_message_skipped_keys (omemo.backend.Backend property)

 	max_num_per_session_skipped_keys (omemo.backend.Backend property)

 	Maybe (class in omemo.storage)

 	maybe() (omemo.storage.Just method)

 	(omemo.storage.Maybe method)

 	(omemo.storage.Nothing method)

 	Message (class in omemo.message)

 	MessageNotForUs

 	MessageSendingFailed

 	
 	
 module

 	omemo.backend

 	omemo.bundle

 	omemo.identity_key_pair

 	omemo.message

 	omemo.session

 	omemo.session_manager

 	omemo.storage

 	omemo.types

N

 	
 	namespace (omemo.backend.Backend property)

 	(omemo.bundle.Bundle property)

 	(omemo.message.Message property)

 	(omemo.session.Session property)

 	
 	namespaces (omemo.types.DeviceInformation property)

 	NoEligibleDevices

 	NoSession

 	Nothing (class in omemo.storage)

 	NothingException

O

 	
 	
 omemo.backend

 	module

 	
 omemo.bundle

 	module

 	
 omemo.identity_key_pair

 	module

 	
 omemo.message

 	module

 	
 	
 omemo.session

 	module

 	
 omemo.session_manager

 	module

 	
 omemo.storage

 	module

 	
 omemo.types

 	module

 	OMEMOException

P

 	
 	PASSIVE (omemo.session.Initiation attribute)

 	PlainKeyMaterial (class in omemo.message)

 	priv (omemo.identity_key_pair.IdentityKeyPairPriv property)

 	PublicDataInconsistency

 	
 	purge() (omemo.backend.Backend method)

 	purge_backend() (omemo.session_manager.SessionManager method)

 	purge_bare_jid() (omemo.backend.Backend method)

 	(omemo.session_manager.SessionManager method)

R

 	
 	receiving_chain_length (omemo.session.Session property)

 	refresh_device_list() (omemo.session_manager.SessionManager method)

 	
 	replace_sessions() (omemo.session_manager.SessionManager method)

 	rotate_signed_pre_key() (omemo.backend.Backend method)

S

 	
 	seed (omemo.identity_key_pair.IdentityKeyPairSeed property)

 	SenderDistrusted

 	SenderNotFound

 	sending_chain_length (omemo.session.Session property)

 	Session (class in omemo.session)

 	SessionManager (class in omemo.session_manager)

 	SessionManagerException

 	set_own_label() (omemo.session_manager.SessionManager method)

 	
 	set_trust() (omemo.session_manager.SessionManager method)

 	signed_pre_key_age() (omemo.backend.Backend method)

 	STALENESS_MAGIC_NUMBER (omemo.session_manager.SessionManager attribute)

 	StillUndecided

 	Storage (class in omemo.storage)

 	StorageException

 	store() (omemo.storage.Storage method)

 	store_bytes() (omemo.storage.Storage method)

 	store_session() (omemo.backend.Backend method)

T

 	
 	TooManySkippedMessageKeys

 	trust_level_name (omemo.types.DeviceInformation property)

 	TrustDecisionFailed

 	
 	TRUSTED (omemo.types.TrustLevel attribute)

 	TrustLevel (class in omemo.types)

 	TWISTED (omemo.types.AsyncFramework attribute)

U

 	
 	UNDECIDED (omemo.types.TrustLevel attribute)

 	UnknownNamespace

 	
 	UnknownTrustLevel

 	update_device_list() (omemo.session_manager.SessionManager method)

X

 	
 	XMPPInteractionFailed

 nav.xhtml

 Table of Contents

 		
 OMEMO - A Python implementation of the OMEMO Multi-End Message and Object Encryption protocol.

 		
 Installation

 		
 Getting Started

 		
 Backend Selection

 		
 Public API and Backends

 		
 Trust

 		
 Setting it Up

 		
 Storage Implementation

 		
 SessionManager Implementation

 		
 Instantiate the Library

 		
 Migration

 		
 Migration from Legacy

 		
 API Documentation

 		
 Module: backend

 		
 Backend

 		
 BackendException

 		
 DecryptionFailed

 		
 KeyExchangeFailed

 		
 TooManySkippedMessageKeys

 		
 Module: bundle

 		
 Bundle

 		
 Module: identity_key_pair

 		
 IdentityKeyPair

 		
 IdentityKeyPairPriv

 		
 IdentityKeyPairSeed

 		
 Module: message

 		
 Content

 		
 EncryptedKeyMaterial

 		
 KeyExchange

 		
 Message

 		
 PlainKeyMaterial

 		
 Module: session

 		
 Initiation

 		
 Session

 		
 Module: session_manager

 		
 SessionManagerException

 		
 TrustDecisionFailed

 		
 StillUndecided

 		
 NoEligibleDevices

 		
 MessageNotForUs

 		
 SenderNotFound

 		
 SenderDistrusted

 		
 NoSession

 		
 PublicDataInconsistency

 		
 UnknownTrustLevel

 		
 UnknownNamespace

 		
 XMPPInteractionFailed

 		
 BundleUploadFailed

 		
 BundleDownloadFailed

 		
 BundleNotFound

 		
 BundleDeletionFailed

 		
 DeviceListUploadFailed

 		
 DeviceListDownloadFailed

 		
 MessageSendingFailed

 		
 SessionManager

 		
 Module: storage

 		
 Just

 		
 Maybe

 		
 Nothing

 		
 NothingException

 		
 Storage

 		
 StorageException

 		
 Module: types

 		
 AsyncFramework

 		
 DeviceInformation

 		
 OMEMOException

 		
 TrustLevel

_static/plus.png

_static/file.png

_static/minus.png

